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FY17 ASC P&EM L2 Milestone 6016: Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis 
of Improved Integrated Codes on Advanced Architecture 

  
Executive Summary 

Author: Robert Hoekstra, 09/22/2017 
 
Introduction 
This	milestone	is	a	tri-lab	deliverable	supporting	ongoing	Co-Design	efforts	impacting	applications	in	the	
Integrated	Codes	(IC)	program	element	Advanced	Technology	Development	and	Mitigation	(ATDM)	
program	element.	In	FY14,	the	trilabs	looked	at	porting	proxy	application	to	technologies	of	interest	for	
ATS	procurements.	In	FY15,	a	milestone	was	completed	evaluating	proxy	applications	in	multiple	
programming	models	and	in	FY16,	a	milestone	was	completed	focusing	on	the	migration	of	lessons	
learned	back	into	production	code	development.	This	year,	the	co-design	milestone	focuses	on	
extracting	the	knowledge	gained	and/or	code	revisions	back	into	production	applications.	
 
Milestone Description 
This	milestone	will	exercise	the	IC	or	ATDM	codes	using	new	and	emerging	programming	models,	to	
demonstrate	portability	and	analyze	performance	characteristics	on	the	latest	advanced	architectures	
expected	to	become	widely	available	in	FY17.	Performance	analysis	tools	will	be	used	to	do	an	in-depth	
analysis	of	those	same	or	similar	production	codes	on	available	ASC	AT	platforms	and	test	beds,	
represented	by	the	significantly	disparate	architectures	of	ATS-1/Trinity	and	ATS-2/Sierra.	This	will	
advance	ASC	co-design	efforts	by	impacting	one	or	more	of	the	following:		

• Determining	performance	bottlenecks	in	new	architectures		
• Characterizing	ASC	applications	(for	example,	memory	footprints,	network	utilization,	

instruction	mixes)	so	as	to	better	inform	proxy	application	development	and	hardware	
design	space	evaluations		

• Evaluating	the	portability	and	performance	of	different	data	structures	and	data	layouts	for	
important	physics	motifs	across	multiple	architectures		

• Evaluating	the	effectiveness	of	hardware	and/or	software-based	memory	and	data	
management	strategies	to	deal	with	automating	movement	between	levels	of	system	
memory	and	I/O	hierarchies		

• Evaluating	the	performance	analysis	tools	in	these	environments	to	determine	their	
strengths	and	weaknesses,	which	will	be	invaluable	in	feedback	to	the	vendors	

Completion	Criteria:	This	milestone	will	be	completed	when:	
1. Improvements	to	the	mini-applications	to	more	closely	represent	our	workloads	are	

demonstrated	on	test-bed	platforms	and/or	production	systems.	
2. A	report	has	been	completed	by	the	3	labs	detailing	lessons	learned	both	successes	and	

failures	in	regard	to	improvements.	
3. The	milestone	team	has	communicated	appropriate	findings	to	vendors	associated	with	the	

platforms	evaluated	in	the	milestone.	
 
Impact Statement  
The	work	performed	under	this	milestone	will	lead	to	a	single,	more	powerful,	voice	from	the	
labs	to	the	vendors	when	demanding	changes	in	the	tools	and	the	toolchain	and	will	have	a	
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tangible	impact	on	these	relations	moving	forward.	This	is	one	of	the	first	times	that	these	tools	
have	been	applied	to	large	applications	and	the	results	of	these	analyses	will	help	improve	both	
the	applications	themselves	and	the	tools.	
	
The	work	performed	under	this	milestone	should	be	a	strong	demonstration	to	vendors	(and	
others)	that	while	proxy-applications	are	a	good	starting	point	for	studies,	they	are	not	enough	
and	full	applications	need	to	be	used	as	well	since	they	oftentimes	present	new	and	tougher	
challenges	to	the	tools.	
	
One	example	of	co-design	with	vendors	that	occurred	during	this	milestone	is	the	joint	
MPI	work	undertaken	to	alleviate	increased	resource	pressure	with	larger	number	of	ranks.	The	
net	result	was	a	more	usable	MPI,	which	helps	with	all	applications	on	the	machine.	
This	work	demonstrated	that	the	problem	size	is	crucial	when	analyzing	applications	and	that	
bottlenecks	sometimes	shift	with	problem	sizes.	This	is	something	that	should	be	conveyed	to	
the	vendors.	
 
 
 
Robert Hoekstra (01422) 
Simon Hammond (01422) 
Michael Lang (LANL) 
Ben Bergen (LANL) 
David Richards (LLNL) 
Robert Neely (LLNL) 
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September 11, 2017 

From:   Sriram Swaminarayan, LANL (Contact) 
Paul Henning, LANL 
Tom Brunner, LLNL 
Patrick Brantley, LLNL 
Travis Fisher, SNL 
Michael Heroux, SNL 

To: Mike Lang, LANL 
Rob Hoekstra, SNL 
Rob Neely, LLNL 

Subject: 2017 Tri-lab ASC ATDM/CSSE/IC Co-design Level 2 Milestone 

Milestone Title: Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis 
of Improved Integrated Codes on Advanced Architecture (#6016) 

Review Committee Comments: 

The review committee believes the tri-lab co-design team fully met the completion criteria for 
this milestone.   

The work performed under this milestone will lead to a single, more powerful, voice from the 
labs to the vendors when demanding changes in the tools and the toolchain and will have a 
tangible impact on these relations moving forward.   

The committee was impressed by the large body of work undertaken and the information 
collected and presented in the slides.  The committee was also impressed by the broad collection 
of production codes that were used in this milestone – this is one of the first times that these tools 
have been applied to large applications and the results of these analyses will help improve both 
the applications themselves and the tools. 
 
The work performed under this milestone should be a strong demonstration to vendors (and 
others) that while proxy-applications are a good starting point for studies, they are not enough 
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and full applications need to be used as well since they oftentimes present new and tougher 
challenges to the tools.   
 
One excellent example of co-design with vendors that occurred during this milestone is the joint 
MPI work undertaken to alleviate increased resource pressure with larger number of ranks.  The 
net result was a more usable MPI, which helps with all applications on the machine. 
 
This work demonstrated that the problem size is crucial when analyzing applications and that 
bottlenecks sometimes shift with problem sizes.  This is something that should be conveyed to 
the vendors. 
  
The committee found the discussion of worthiness of metrics useful and appropriate – if we 
cannot believe the output of the tools that we have, the hours (or days) spent collecting data are 
for naught.  Some of the noteworthy examples presented included the interpretation of memory 
bandwidth reported in VTune and analysis of vector operations counts. 
 
Finally, for the FY18 milestone, the committee would like to see more GPU results, stronger 
collaboration between the labs on metrics gathering, consistent metrics reporting across 
applications and labs, and inclusion of applications with memory accesses that have graph-like 
characteristics.  We also recommend that the team share results with stakeholders, including 
experts that are knowledgeable in the relationship between the proxy application and the full 
application, early to ensure that proxy application results reflect expectations from the full 
application. 
  
Sincerely, 
 
 
 
 
Sriram Swaminarayan, on behalf of the committee. 
sriram@lanl.gov 
+1-505-667-8647 
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§ Solves	the	neutral	particle	
Boltzmann	Transport	Equation	in	
1D,	2D,	and	3D

§ RAJA	refactoring	is	in	progress

§ Solution	is	neutron	energy,	
direction	of	flight,	and	spatial	
distribution
— We	have	MPI	parallelism	in	each	of	

these	dimensions

§ 4	major	kernels
— LTimes,	LPlusTimes,	Sweep,	Fission	

§ Jez_scale_3d
— Critical	bare	Pu	sphere	
— Weak	scale	with	mesh	cells	

(increase	resolution)

§ Optimization	Challenges
— Vectorization
— Difficult	memory	access	patterns
— Hoisting	index	calculation
— Peeling	indices	while	descending	

call	stack	complicates	exposing	
parallelism

— Wavefront (sweep)	dataflow

Ardra is	LLNL’s	next	generation	deterministic	transport	code
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§ Led	to	new	RAJA	N-nested	loop	
abstraction

§ Lessons	learned	from	Ardra refactoring	
are	driving	new	improvements	to	RAJA

Kripke,	a	proxy	app	for	Ardra,	was	used	to	explore	use	of	RAJA

§ LTimes and	LPlusTimes kernels	are	
streaming	kernels	of	the	form
phi(nm,g,z)	+=	ell(nm,d)	*	psi(d,g,z)
— z	is	stride	1
— ell(nm,d)	is	invariant	in	inner	loop

§ Previous	Kripke studies	found	LTimes &	
LPlusTimes (and	all	other	kernels)	are	
memory	bound	on	GPU,	but	not	
elsewhere	(less	than	25%	of	B/W).

§ Goal:	Identify	the	bottleneck	for	these	
kernels	on	current	platforms

RAJA::View vview(v_ptr, 
make_perm_layout(ni,nj));

//...

RAJA::forallN< exec_policy, INDX, JNDX >(            
RangeSegment(1, ni),   
RangeSegment(0, nj),
[=](INDX i, JNDX j) {

vview(0, j) += vview(i, j);

});

RAJA	style	nested	for-loop
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Intel	VTune suggests	Ardra is	not	B/W	bound	on	CTS

DRAM	B/W	peaks
at	50-60	GB/sec
or	~50%	of	
130	GB/sec	peak
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Intel	VTune suggests	Ardra is	not	B/W	bound	on	CTS

This	diagnostic
is	confusing	and
not	consistent
with	developer
intuition

FPU	usage	is	
uniformly	low



LLNL-PRES-xxxxxx
6

§ Low	flop	rate	throughout	code	(2.1%	of	peak)

§ Nearly	all	flops	are	scalar	instructions
— VTune reports	12:1	ratio	for	scalar	to	vector	flops
— Allinea Map	reports	6:1	ratio
— VTune shows	no	vectorization	in	key	kernels

§ VTune shows	high	“Retiring”	in	
LTimes and	LPlusTimes

§ Intel	optimization	manual	says	high	retirement	
means	you	should	vectorize
— Allows	more	operations	to	complete	per

instruction	

Root	cause	analysis	requires	deduction	and	guesswork
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§ RAJA	abstractions	are	inhibiting	vectorization
— Refactoring	and	refinements	are	in	progress
— Manual	unrolling	and	intrinsics were	used	to	

obtain	vectorized code

§ Performance	improved:
— Kernel	times	are	significantly	faster
— But	DRAM	B/W	changed	very	little

§ Performance	impact	depends	on	problem	size
What’s	going	on?
— Small	problem	now	operates	at	L2	B/W
— Loads	from	L2	don’t	show	up	in	DRAM	B/W
— Would	blocking	for	L2	improve	big	problem	

performance?

After	a	lengthy	saga,	vectorization	improved	performance
(except	when	it	didn’t,	and	not	the	way	we	expected)

Small Problem scalar vector

LTimes 15.53	sec 6.67	sec

LPlusTimes 22.43	sec 14.80	sec

DRAM B/W 60	GB/sec 68	GB/sec

Big Problem scalar vector

LTimes 84.75	sec 82.43	sec

LPlusTimes 101.38 sec 99.37	sec

DRAM B/W 117	GB/sec 119 GB/sec
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§ Problem	size	matters

§ B/W	may	not	be	what	you	think	it	is

§ Bottleneck	identification	is	hard

CTS	summary	slide?
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§ Limited	tool	set	available.		Mostly	
timing	breakdowns	by	function
— Data	from	internal	timers
— Similar	data	from	CrayPAT,	Map,	PAPI

§ KNL	performance	is	consistent	with	
expectations	for	codes	not	specifically	
tuned	for	KNL

§ Performance	difference	not	uniformly	
distributed	across	kernels

Ardra performance	on	KNL	is	~1/2	of	Broadwell	(node	to	node)

Time	in	Seconds Broadwell KNL Ratio
Total 60.2 117.6 1.95

Solve 59.4 99.4 1.67

Sweep 12.3 31.8 2.58

LTimes 23.8 34.7 1.46

LPlusTimes 13.4 16.1 1.20

Fission 5.3 9.4 1.77
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Ardra does	not	appear	to	be	B/W	bound	on	KNL

By	changing	NUMA	modes	we	can	get	some	hints	that	some	kernels	are	B/W	bound	
(at	least	they	are	sensitive),	but	we	can’t	get	at	the	details	without	better	tools

Time	in	Seconds W/O	HBM With	HBM
Total 133 117.6

Solve 117.4 99.4

Sweep 31.0 31.8

LTimes 48.6 34.7

LPlusTimes 16.1 16.1

Fission 10.1 9.4

LTimes is	sensitive,	but	not	
even	close	to	a	4x	speedup

And	LPlusTimes shows	no	
change?!	

We	hoped	vectorization	would	improve	
KNL	performance.		Preliminary	trials	
show	only	a	10%	gain	in	LTimes.
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§ Measuring	memory	B/W	is	challenging	
for	multiple	reasons	
— Counters	are	on	memory	controller	

(“uncore”)
— Not	associated	with	any	processor,	

thread,	or	execution	context
— Must	use	some	model	to	attribute

memory	use	to	code

§ Tools	benefit	from	information	from
the	application	domain
— PCP	allows	users	to	read	memory

controller	counters	and	build
their	own	models

§ Data	shown	here	assumes	SPMD	
execution	across	all	cores.

Performance	Co-Pilot	helps	provide	more	accurate	memory
bandwidth	attribution

VTune
Memory	Bound

PCP DRAM
R/W	bandwidth

Sweep 34% 20.0/12.5	GB/s

LTimes 17.3% 45.4/24.5	GB/s

LPlusTimes 1.75% 12.9/4.5	GB/s

Fission 47.1/45.9	GB/s
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§ Kripke helped	show	RAJA	would	work	in	Ardra.		Now	Ardra is	driving	improvements	in	
RAJA	design	and	implementation

§ RAJA	N-nested	loops	re-designed/re-implemented	to	fix	disastrous	performance
— CHAI	copy	constructors	were	being	called	for	each	iteration	of	the	inner	loop

§ Trials	to	date	obtain	only	~5	GB/sec	out	of	732	GB/sec	peak	B/W
— Clearly	not	memory	bound.		Larger	problems	are	needed
— Problem	size	is	limited	by	RAJA	reduction	implementation
— Fixes	are	in	progress

§ MPI	communication	in	sweep	kernel	is	a	major	bottleneck
— New	algorithm	has	been	demonstrated
— Not	yet	implemented	in	Ardra

Ardra on	GPU	is	relatively	immature,	but	improving	rapidly
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Nvprof shows	sweep	is	dominated	by	non-compute	time

Manually	scrolling	and	
zooming	is	not	the	most	
productive	method	to	
identify	such	issues
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Compare	sweep	to	L0Times	that	shows	dense	compute
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Other	curiosities/frustrations:	Tools	don’t	agree	on	timings

Region Region Function
critSolver
97.5%	98.4%	N/A	98%	N/A

SigmaFTimes
10.7%	8.1% N/A	N/A	1.0%

Scattering
43.3%	55.6%	54.7%	64%	59.7%

LTimes
19.0%	23.9%	25.5%	40%	32.3%
LPlusTimes
15.4%	20.0%	18.1%	23%	19.1%
applySigS
7.5%	9.8%	11.1%	N/A	8.3%

Precond	Solve
40.2%	30.7%	N/A	35%	N/A

MPI_Allreduce
20.9%	8.1%	N/A	N/A	N/A
Sweep_Solver3D
18.7%	21.9%	15.4%	20%	12.5%

Remainder
2.5% 1.6%	N/A	2%	N/A

Remainder
5.8%	5.6%	N/A	1%	N/A

Remainder
7.8%	9.2%	N/A	N/A	N/A

Legend: HPCToolkit, MAP, GPerfTools,	Built-In	Timers,	Open|SpeedShop
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Other	curiosities/frustrations:	VTune	recommendations	can	be	
less	than	helpful

32	threads:		55.75	sec 64	threads:		55.67	sec
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§ CTS	tools	good	enough	for	hypothesis	generation
— However,	all	guesses	so	far	are	wrong
— Frequently	end	up	looking	at	disassembled	code

§ Issues	with	misleading	and	confusing	information
— Incorrect	or	misleading	hints	are	a	huge	waste	of	time

§ Need	to	know	algorithmic	characteristics	to	fully	understand	performance
— Especially	memory	reads/writes
— Performance	model	and	map	to	hardware	are	critical	to	understand	if	you’re	done	optimizing

§ Ardra is	not	B/W	bound	on	any	studied	platform
— GPU	needs	bigger	problems
— Bottleneck	unclear	on	CTS	and	KNL

Conclusion	(needs	to	be	refreshed/updated	to	latest	results)
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Backup	slides	showing	that	we	have	data	for	all	of	the	metrics
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Wall-Time	Differences	between	Tools

Region Region Function
critSolver
97.5%	98.4%	N/A	98%	N/A

SigmaFTimes
10.7%	8.1% N/A	N/A	1.0%

Scattering
43.3%	55.6%	54.7%	64%	59.7%

LTimes
19.0%	23.9%	25.5%	40%	32.3%
LPlusTimes
15.4%	20.0%	18.1%	23%	19.1%
applySigS
7.5%	9.8%	11.1%	N/A	8.3%

Precond	Solve
40.2%	30.7%	N/A	35%	N/A

MPI_Allreduce
20.9%	8.1%	N/A	N/A	N/A
Sweep_Solver3D
18.7%	21.9%	15.4%	20%	12.5%

Remainder
2.5% 1.6%	N/A	2%	N/A

Remainder
5.8%	5.6%	N/A	1%	N/A

Remainder
7.8%	9.2%	N/A	N/A	N/A

Legend: HPCToolkit, MAP, GPerfTools,	Built-In	
Timers,	Open|SpeedShop
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Ardra’s Built-In	Timers	give	an	aggregated	wall-time	trace

--------------------------------------------------------------------------------------
Run Time Statistics

Wall Time (sec)
%Tot %vl Timer Name Count Total Per Count
---- ----------------------------------------------- ----------- ---------- ----------

0.99 (0.99) runDriver 1 59.723425 59.723425
0.00 (0.00) calcDetectorValues 2 0.000010 0.000005
0.00 (0.00) fluxEdit 1 0.000510 0.000510
0.99 (0.99) solve 1 59.401240 59.401240
0.99 (1.00) critSolver 1 59.401219 59.401219
0.38 (0.38) ardra_BoltzmannPrecondSolve 25 22.586105 0.903444
0.20 (0.54) Sweep3D_DD 1200 12.280318 0.010234 
0.02 (0.02) ardra_L0TimesZonal 25 0.947570 0.037903
0.63 (0.64) bj_scattering_fanout 25 38.082054 1.523282
0.40 (0.63) bj_gp_loop 1200 23.807309 0.019839
0.22 (0.35) bj_lplus 25 13.394594 0.535784
0.00 (0.00) dsaMatrixSetup 1 0.000970 0.000970
0.09 (0.09) fission_fanout 26 5.359588 0.206138
0.00 (0.00) writeRestart 1 0.220500 0.220500 
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HPCToolkit	can	provide	CPUTime,	Wall-Time,	PAPI	Counters,	MPI	
Time,		Loop-level	performance	analysis



LLNL-PRES-xxxxxx
23

Total: 5536 
1409  25.5%  25.5%     1410  25.5% ardra_LTimes::{lambda#2}::operator (inline) 
993  17.9%  43.4%     1000  18.1% ardra_LPlusTimes::{lambda#1}::operator (inline) 
855  15.4%  58.8%      855  15.4% Ardra::Sweep_Solver::Sweep_Solver3D::SweepDD
483   8.7%  67.6%      613  11.1% ::applySigS
477   8.6%  76.2%     3198  57.8% RAJA::forall (inline)
324   5.9%  82.0%      324   5.9% Armus::Kernel::kGenericElemental2 
101   1.8%  83.9%      101   1.8% __intel_avx_rep_memset
98   1.8%  85.6%      113   2.0% RAJA::LayoutBase_impl::operator (inline) 
85   1.5%  87.2%       85   1.5% PMPI_Testany

Google’s	GPerfTools provides	an	easy-to-use	time	breakdown
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Allinea MAP	Provides	Wall	Time,	MPI	Time,	CPU	Time,	
instruction	mixes,	FP	vectorization	rates
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§ VTune Suggested	we	should	vectorize	the	LTimes and	LPlusTimes kernels	(see	next	
few	slides)

§ Vectorizing	LTimes was	a	significant	effort.

§ Vectorization	significantly	speeds	up	Ardra for	non	memory-bound	problem	sizes.

VTune and	Vectorizing	Ardra
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Intel	VTune Suggests	FPU	Utilization	Issues	across	Ardra
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Intel	VTune Suggests	FPU	Utilization	Issues	in	LTimes and	
LPlusTimes kernels
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VTune Shows	No	Vectorization	Happening	in	Ardra
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VTune Shows	Instruction	Retirement	Issues	in	LTimes and	
LPlusTimes
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Intel	Optimization	Manual	Says	High	Retirement	Means	You	
Should	Vectorize	

Intel 64 and IA-32 Architectures Optimization Reference Manual section B.1.7:

A high Retiring value for non-vectorized code may be a good hint to vectorize 
the code. Doing so essentially lets more operations to be [SIC] completed by 
single instruction/micro-op; hence improve performance.
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§ Hypothesis:	We	should	vectorize	LTimes and	LPlusTimes:

§ VTune Provided	Evidence:
— Low	FPU	Utilization	in	LTimes and	LPlusTimes
— No	Vector	instructions	being	compiled	into	LTimes and	LPlusTimes

• Also	backed	by	MAP	and	disassembling	the	kernels
— LTimes and	LPlusTimes spends	most	time	retiring	instructions
— Intel	optimization	manual	says	retiring	is	optimized	via	vectorization

§ Used	Intel	compiler	intrinsics to	vectorize	LTimes into	a	loop	around	a	256-bit	
fused	add/multiply	instruction.

§ Results:	Vectorizing	LTimes sped	up	by	over	2x.		Problem	now	runs	at	the	speed	
of	L2	cache

VTune Vectorization	Summary
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§ The	sweep	algorithms	used	by	Ardra are	known	not	to	scale

§ Ardra has	previously	been	shown	to	scale	as	well	as	the	ideal	sweep	algorithm	

§ The	mpiP tool	can	break	down	MPI	times	by	call	path	and	point-to-point	vs.	collective

MPI	Weak	Scaling	with	Ardra
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Scaling	Top	3	MPI	Routines	in	Ardra
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§ Memory	High	Water	Mark

§ Memory	Bandwidth

§ IPC

Other	Measurements
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memP Tool	Shows	Memory	High-Water	Mark

-------------------------------------------------------------------------------
@--- Greatest Heap High Water Mark (top 5, descending, bytes)
-------------------------------------------------------------------------------

Rank      Heap HWM       Stack          Sum
16     334.45 MB    27.55 KB    334.48 MB
1     334.27 MB    27.64 KB    334.30 MB
4     334.27 MB    27.64 KB    334.30 MB

17     334.19 MB    27.55 KB    334.21 MB
20     334.19 MB    27.55 KB    334.21 MB

-------------------------------------------------------------------------------
@--- Heap HWM Statistics -------------------------------------------
-------------------------------------------------------------------------------
Max                               :    334.45 MB
Median                            :    310.12 MB
Mean                              :    310.61 MB
Min                               :    287.77 MB
Stddev :     16.32 MB
Coefficient of variation          :     0.052555
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Performance	Co-Pilot	Provides	Access	to	Memory	Bandwidth	
Counters

Run Time Statistics Wall Time (sec)
Name Count Total Per Count Read BW (MB/S) Write BW (MB/S)

---- ------------------------------- -------- ----------- ---------- ---------- ----------------- ---------------

0.99   (0.99)  runDriver 1  58.194303  58.194303        33521.11        19988.36
0.00     (0.00)  calcDetectorValues 2   0.001631   0.000816        58550.63         5699.95
0.00     (0.00)  fluxEdit 1   0.001138   0.001138        19093.88          449.64
0.98     (0.99)  solve                                  1  57.421936  57.421936        33789.96        20242.19
0.98       (1.00)  critSolver 1  57.421919  57.421919        33787.91        20241.49
0.38         (0.39)  ardra_BoltzmannPrecondSolve 25  22.263067   0.890523        11457.50         6998.44
0.20           (0.53)  Sweep3D_DD                    1200  11.754593   0.009795        20016.79        12478.46
0.01         (0.01)  ardra_L0TimesZonal                25   0.839731   0.033589       107391.46         1972.86
0.65         (0.66)  bj_scattering_fanout 25  38.104032   1.524161        33744.05        18284.05
0.39           (0.60)  bj_gp_loop 1200  23.008618   0.019174        45400.02        24469.75
0.22           (0.34)  bj_lplus 25  12.917722   0.516709        12885.62         4581.34
0.00         (0.00)  dsaMatrixSetup 1   0.000816   0.000816         8204.87         5446.62
0.08         (0.08)  fission_fanout 26   4.458054   0.171464        47140.92        45936.05
0.01     (0.01)  writeRestart 1   0.668223   0.668223          412.27          341.27

--------------------------------------------------------------------------------------
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IPC	calculations	from	PAPI

Wall Time (sec)
%Tot    %lvl Timer Name            Count       Total  Per Count   PAPI_TOT_INS    PAPI_TOT_CYC    IPC
---- -------- ---------------------------- ----------- ---------- ------------- --------------- ----
0.99 (0.99) runDriver 1 55.470365 55.470365 324162081674 137489604904 2.36
0.00 (0.00) calcDetectorValues 2 0.000031 0.000015 4766 11925 0.40
0.00 (0.00) fluxEdit 1 0.000435 0.000435 1416821 1026943 1.38
0.98 (0.99) solve 1 54.835454 54.835454 323421631027 137001207761 2.36
0.98 (1.00) critSolver 1 54.835402 54.835402 323421624234 137001189017 2.36
0.35 (0.35) ardra_BoltzmannPrecondSolve 25 19.416221 0.776649 462818928 28673595986 1.61
0.20 (0.58) Sweep3D_DD 1200 11.347921 0.009457 41570458833 26857361098 1.55
0.01 (0.01) ardra_L0TimesZonal 25 0.817820 0.032713 6106458767 2090150611 2.92
0.64 (0.66) bj_scattering_fanout 25 35.924563 1.436983 245742185602 90729230958 2.71
0.40 (0.62) bj_gp_loop 1200 22.161912 0.018468 133669003312 56761088769 2.35
0.23 (0.35) bj_lplus 25 12.657956 0.506318 111588764852 32601102609 3.42
0.00 (0.00) dsaMatrixSetup 1 0.000040 0.000040 2511 9463 0.27
0.08 (0.08) fission_fanout 26 4.409059 0.169579 22592708167 10981676930 2.06
0.01 (0.01) writeRestart 1 0.534155 0.534155 358056618 236388890 1.51 
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KNL	Data	for	Ardra
§ Run	on	LANL’s	Trinitite
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Allinea MAP	on	KNL	Showing	Instruction	Mix
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KNL	CrayPAT Hardware	Counters

Table 4:  Program HW Performance Counter Data

PE=HIDE

==============================================================================
Total

------------------------------------------------------------------------------
UNHALTED_CORE_CYCLES             148,513,518,999 
UNHALTED_REFERENCE_CYCLES        138,612,610,990 
INSTRUCTION_RETIRED              121,483,923,581 
LLC_REFERENCES                     2,923,544,676 
LLC_MISSES                            91,517,871 
LLC cache hit,miss ratio  96.9% hits        3.1% misses

==============================================================================
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Ardra’s Built-In	Timers,	with	HBM

--------------------------------------------------------------------------------------
Run Time Statistics

Wall Time (sec)
%Tot %vl Timer Name                        Count       Total     Per Count
---- ----------------------------------------------- ----------- ---------- ----------
0.86   (0.86)  runDriver 1 101.049208 101.049208
0.00     (0.00)  calcDetectorValues 2   0.000017   0.000009
0.00     (0.00)  fluxEdit 1   0.014949   0.014949
0.84     (0.98)  solve                                         1  99.364175  99.364175
0.84       (1.00)  critSolver 1  99.364004  99.364004
0.45         (0.54)  ardra_BoltzmannPrecondSolve 25  53.269412   2.130776
0.27           (0.60)  Sweep3D_DD                           1200  31.825563   0.026521
0.02         (0.02)  ardra_L0TimesZonal                       25   2.202952   0.088118
0.44         (0.52)  bj_scattering_fanout 25  51.718966   2.068759
0.30           (0.67)  bj_gp_loop 1200  34.733989   0.028945
0.14           (0.31)  bj_lplus 25  16.131730   0.645269
0.00         (0.00)  dsaMatrixSetup 1   0.000052   0.000052
0.08         (0.09)  fission_fanout 26   9.390708   0.361181
0.01     (0.02)  writeRestart 1   1.615085   1.615085



LLNL-PRES-xxxxxx
44

Ardra’s Built-In	Timers,	with	HBM	disabled

--------------------------------------------------------------------------------------
Run Time Statistics

Wall Time (sec)
%Tot %vl Timer Name                        Count       Total     Per Count
---- ----------------------------------------------- ----------- ---------- ----------
0.88   (0.88)  runDriver 1 117.428259 117.428259
0.00     (0.00)  calcDetectorValues 2   0.000019   0.000010
0.00     (0.00)  fluxEdit 1   0.012143   0.012143
0.87     (0.99)  solve                                         1 115.775249 115.775249
0.87       (1.00)  critSolver 1 115.774777 115.774777
0.39         (0.45)  ardra_BoltzmannPrecondSolve 25  52.312439   2.092498
0.23           (0.59)  Sweep3D_DD                           1200  31.040346   0.025867
0.02         (0.02)  ardra_L0TimesZonal                       25   2.198163   0.087927
0.50         (0.57)  bj_scattering_fanout 25  66.402436   2.656097
0.36           (0.73)  bj_gp_loop 1200  48.644699   0.040537
0.12           (0.24)  bj_lplus 25  16.083930   0.643357
0.00         (0.00)  dsaMatrixSetup 1   0.000026   0.000026
0.08         (0.09)  fission_fanout 26  10.131977   0.389691
0.01     (0.01)  writeRestart 1   1.543792   1.543792
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Ardra’s Built-In	Timers	with	IPC	from	PAPI

--------------------------------------------------------------------------------------
Run Time Statistics

Wall Time (sec)
%Tot %vl Timer Name                   Count    Total   Per Count    PAPI_TOT_INS    PAPI_TOT_CYC     IPC
---- -------------------------------------------- ---- ---------- ---------- --------------- --------------- ------
0.85   (0.85)  runDriver 1  98.596496  98.596496    127939335250    136701452657   0.94
0.00     (0.00)  calcDetectorValues 2   0.000068   0.000034            4394           26922   0.16
0.00     (0.00)  fluxEdit 1   0.011763   0.011763          764245         1192409   0.64
0.84     (0.98)  solve                               1  97.051414  97.051414    127129798718    134946610048   0.94
0.84       (1.00)  critSolver 1  97.051194  97.051194    127129792939    134946537515   0.94
0.44         (0.52)  ardra_BoltzmannPrecondSolve 25  50.812436   2.032497     34422457161     55545714728   0.62
0.27           (0.62)  Sweep3D_DD                 1200  31.608640   0.026341     29440200696     46646236415   0.63
0.02         (0.02)  ardra_L0TimesZonal             25   2.175385   0.087015      3168726418      3177950528   1.00
0.43         (0.52)  bj_scattering_fanout 25  50.008220   2.000329     77215472964     62496507175   1.24
0.29           (0.67)  bj_gp_loop 1200  33.539460   0.027950     46714375423     41527300851   1.12
0.13           (0.31)  bj_lplus 25  15.503903   0.620156     30440374680     20618413930   1.48
0.00         (0.00)  dsaMatrixSetup 1   0.000083   0.000083            2567           20830   0.12
0.08         (0.09)  fission_fanout 26   9.211234   0.354278     10944412869     12622144189   0.87
0.01     (0.02)  writeRestart 1   1.536780   1.536780       617062571      1529302924   0.40
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§ LTimes when	scalar:	31.68s

§ LTimes after	vector	optimizations:	34.88s

Using	the	LTimes Vector	Optimizations	from	CTS-1	has	smaller	
impact	on	KNL
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§ These	benchmarks	were	run	on	rzmanta,	a	Coral	EA	system	at	LLNL.	Some	key	specs
— Each	node	has	4	Tesla	P100-SXM2	Nvidia GPUs
— Also	Power8	cores
— Power8+GPU	linked	with	NVLINK	to	enable
— Final	numbers	gotten	from	CUDA	8.0,	system	now	has	CUDA9,	numbers	appear	similar

GPU	Raw	Data
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GPU	Bandwidth	Measurements
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Compute-Dense	L0TimesZonal	shows	good	utilization	of	P100s
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Compute-sparse	Sweep	Shows	poor	utilization	of	P100s
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Parallel	utilization	is	low	across	the	application,	kernels	are	small

Utilization	
Numbers
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IPC/CPI	for	GPU	
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Cache	hit	rates	are	relatively	good	on	this	problem	size
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• Terminology
• PARTISN
• VPIC
• FleCSALE
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Pipeline Hazards

• Structural Hazard
• A hazard that arises from a resource conflict where the hardware cannot support all 

possible instruction combinations simultaneously
• Example: the pipeline stalls because a vector addition requires both of its operands 

to be shuffled, but shuffles can only occur on one execution unit
• Data Hazard

• A hazard that arises when an instruction depends on the result of a previous 
instruction

• Example: the pipeline stalls because a load operation from main memory has not 
yet completed

• Control Hazard
• A hazard that arises from a branch or instruction that changes the program counter
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Intel Roofline Model – Explanation
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PARTISN
Work done by Randy Baker and Joe Zerr
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PARTISN
Overview

• Basis for SNAP mini-app
• 110,000 lines of code (Fortran with some C and Python)
• Dates to the 1950s/early 1960s
• Originally targeted to the CDC-7600

• 10 MFlop/s peak
• Supported by four people (2.5 FTEs)

• Methods research
• Algorithm development
• Software development & testing
• User support & applications expertise

PARTISN is a time-dependent, multi-dimensional neutron/gamma 
transport code developed at LANL
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PARTISN
Haswell 32-core, 32 MPI ranks, 32 GB, 48.0 seconds
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PARTISN
KNL 68-core, 64 MPI ranks, 32 GB, 74.6 seconds

Time ratio (KNL/Haswell): 64%
TDP ratio (215W/270W): 80%
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PARTISN
Memory Bandwidth Boundedness

• PARTISN is only somewhat memory bandwidth bound on Haswell
• 13.2% DRAM bandwidth bound
• 0.519 CPI (minimum is 0.25 CPI)

• Memory bandwidth is less of an issue on KNL
• 4.0% DRAM bandwidth bound
• 1.326 CPI (minimum is 0.5 CPI)

Haswell Memory Bandwidth Utilization
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PARTISN
KNL Bottleneck – Prefetch

• Intel VTune Amplifier

• Red flag is L2 Miss Bound
• In spite of > 90% hit rate

• Discussion with Intel suggested that compiler-generated prefetch
instructions were swamping the prefetcher
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PARTISN
KNL Bottleneck – Prefetch

• Prefetch instructions can reduce memory latency by requesting data 
before they are needed, giving more leeway to the dynamic scheduler

• KNL supports software and hardware-generated prefetch instructions 
(priority is given to software-generated prefetch instructions)

• The prefetcher has a limited number of available slots
• Too many prefetch instructions can thrash the prefetcher

• The likely cause of the KNL bottleneck was a structural hazard 
caused by too many compiler-generated prefetch instructions!

0x487bae80
prefetch list

0x89c5ab80
0xa9f8cc10
0x5ab7fe80
0xbadbeef✘

eviction
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PARTISN
KNL Optimization – Manual Prefetch

• Disabled top-level loop prefetch
• cdir$ noprefetch

• Added manual prefetch instructions for key arrays ahead of use
• call mm_prefetch ( q(n,i,j,k), 1 )
• L2 prefetch is preferable to L1
• data alignment is not critical

• Labeled key array as non-temporal, i.e., don’t bother caching this…
• cdir$ vector aligned nontemporal
• data alignment is critical

• Single day of actual coding effort
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PARTISN
Optimizations Significantly Improved KNL Performance

• Intel VTune Amplifier

• L2 Hit Rate
• Improved by 5%

• L2 Miss Bound
• Decreased by 9%
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PARTISN
KNL 68-core, 64 MPI ranks, 32 GB, 56.9 seconds

Time ratio (KNL/Haswell): 83%
TDP ratio (215W/270W): 80%

PARITY…
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PARTISN
Memory Bandwidth Boundedness

• PARTISN is still only somewhat memory bandwidth bound
• The implication is that we still haven’t achieved optimal performance…

• We are exploring scheduling issues for nested vector operations

Old / New



Los Alamos National Laboratory

9/22/17 |   18

PARTISN
Summary

• PARTISN is not primarily memory bandwidth bound
• KNL performance optimization removed a structural hazard that was 

affecting memory latency
• Remaining performance gains are likely to be gotten by improving 

scheduling of vector operations
• Coral-EA

• Code has been ported to compile on LANL’s pre-Sierra nodes (Power8)
• Future work will investigate OpenMP function off-load capability
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VPIC
Work done by Dave Nystrom
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VPIC
Overview

• Open Source: https://github.com/losalamos/vpic
• Single Precision
• Structured Cartesian Mesh
• Array-of-Structures (AoS) (particle and field data)
• Asynchronous MPI (distributed memory)
• OpenMP or Pthreads (shared memory)
• Explicit short/wide vectorization using hardware intrinsics

VPIC is a 3D explicit, relativistic, charge-conserving electromagnetic 
particle-in-cell (PIC) code originally developed by Kevin Bowers at LANL
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VPIC
Analysis Problems

• Field Mesh (same for both problems)
• 544x96x96 (more cells in the x-direction)
• ~5,000,000 cells
• Ion and electron species

• Large Problem (exceeds HBM capacity on KNLs)
• 250 particles per cell
• ~80 GB Memory

• Small Problem (fits HBM capacity on KNLs)
• 25 particles per cell
• ~8 GB Memory
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VPIC
Performance – Large Problem
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VPIC
Performance – Large Problem
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VPIC
Performance – Large Problem
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VPIC
Performance – Large Problem
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VPIC
Performance – Large Problem
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VPIC
Performance – Large Problem
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VPIC
Performance – Small Problem
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VPIC
Strong Scalability

Large Problem Small Problem
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VPIC
Memory Bandwidth Limitations – Small Problem

DDR Memory HBM Memory
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VPIC
Memory Bandwidth Limitations – Small Problem

DDR Memory HBM Memory
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VPIC
Memory Bandwidth Limitations – Small Problem

DDR Memory HBM Memory
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VPIC
Memory Bandwidth Limitations – Small Problem

DDR Memory HBM Memory

HBM is 2x faster
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VPIC
Memory Bandwidth Utilization – Large Problem

DRAM

HBM
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VPIC
Memory Bandwidth Utilization – Large Problem

DRAM

HBM

sorted

more interleaved

• Sorted particles essentially get full memory bandwidth utilization
• As interleaving occurs, HBM utilization increases due to field data accesses
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VPIC
Memory Bandwidth Utilization – Small Problem

DRAM

HBM
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VPIC
Port Utilization

• For 21.6% of the cycles, the CPU executed only 1 µop on any port
• Discussion with Intel suggested that this may be a structural hazard 

caused by shuffle operations required to re-order data for vector 
arithmetic

Ports In Use Cycles Fraction
0 64.7%
1 21.6%
2 15.4%

3+ 19.4%



Los Alamos National Laboratory

9/22/17 |   38

VPIC
Summary

• Large problem is currently memory-bandwidth limited
• Small problem is limited by instruction latency
• We have several strategies to improve HBM bandwidth utilization

• Re-implementation of transpose operation to use different intrinsics
• Try gather/scatter support to re-order data by hand
• Change data layout: Array-of-Structure-of-Vector (AoSoV)

• Better HBM utilization may provide an impetus to try triple buffering 
approach



Los Alamos National Laboratory

9/22/17 |   39

FleCSALE
Work done by Marc Charest
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FleCSALE
Runtime Portability

FleCSI allows switch between MPI and Legion runtime models 
with no change to application code

MPI Legion
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Outline
§ FY17	has	been	a	very	busy	year	for	the	APT	team

§ Analysis	of	ATDM	EMPIRE/Drekar code
§ Analysis	of	ATDM	SPARC	code	(using	native	and	Trilinos solvers)
§ Support	for	IC/NALU	and	ATDM	SPARC	runs	on	Trinity	Phase-II	(KNL)	partition
§ Vendor	collaborations	(see	a	few	examples	later	in	this	talk	but	many	more)
§ ASC	Advanced	Testbed bring	up	for	ARM/Cavium and	Intel	Sky	Lake	
§ General	ASC/IC	(SIERRA	&	RAMSES)	and	research	code	support
§ Profiling	and	Debug	Tools	Testing	(and	feedback	to	vendors/ISVs)
§ Continued	development	of	LMDS/OVIS	Continuous	Performance	Monitoring

§ Slide	deck	contains	some	results	from	many	of	these	activities
§ Focus	here	on	a	select	few	“stories”	less	than	specific	metrics	(see	additional	slides	for	

more	details),	huge	effort	on	behalf	of	the	team	to	cover	many	areas (thank	you!)



Analysis	“Stories”

§ In	today’s	talk	we	are	going	to	talk	about	two	codesign studies	from	this	year	
(based	on	metrics	we	gathered):
§ MPI	NIC	Resource	Requirements	– how	big	do	some	significant	structures	need	to	be?
§ Compiler	Vectorization Levels	– how	do	multiple	generations	of	compilers	compare	and	what	

level	of	vectorization are	we	getting?

§ We	have	collected	lots	more	metrics/data	on	codes	and	have	them	in	the	
annotated	slides	for	the	review	committee
§ See	the	included	slides	and	let	us	know	if	you	have	any	questions
§ Work	continues	to	drill	down	further	on	these	codes	and	we	will	be	adding	continuous	

performance	monitoring	and	KokkosP-based	overnight	testing	to	our	suites	in	FY18



APPLICATION MPI/NIC	METRICS
Codesign of	Next-Generation	Network	Interconnects



MPI	Receive	Lists	(with	Cray)
§ Working	with	Cray	interconnect	team	to	evaluate	application requirements	for	

NIC	and	MPI	acceleration
§ MPI	Receive	Queues	(how	many	pending	receives	per	rank)
§ Average	lengths	of	unexpected	queues

§ Codesign aspects:
§ Resource	structure	sizes	on	the	NIC	(how	many	list	entries	are	required)
§ Are	our	applications	well	behaved	with	respect	to	resource	scaling	by	MPI	ranks?

§ Implications	for	future
§ Want	to	“right	size”	the	resource	entries	in	future	network	interconnects/NICs
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Conclusions	(from	Cray)
§ The	application	data	has	similar	behavior	to	a	broad	collection	of	mini-apps

§ If	you	take	behavior	of	mini-applications	across	broad	cross-section
§ See	lots	of	cases	where	mini-apps	and	applications	have	extra	resource	usage	on	rank-0

§ Drekar MPI-only	will	place	significant	strain	on	network	interconnect/NIC	
when	used	at	scale
§ Concern	this	may	cause	high	cost	if	the	number	of	receives	exceeds	NIC	resources

§ See	work	from	Mike	Levenhagen,	Ryan	Grant	etc on	deep	investigation
§ Extension	of	OpenMPI so	we	can	perform	similar	studies	on	CTS	and	POWER-EA	systems
§ Early	results	also	shared	with	Cray
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COMPILER QUALITY/OUTPUT ANALYSIS
Comparing	Compiler	Technology	Generations



Generations	of	Compilers
§ All	DOE	laboratories	receive	new/updated	compilers	at	least	yearly

§ Improved	language	support
§ Fixed	bugs
§ Better	code/instruction	generation	or	new	hardware	targets
§ Higher	level	of	optimization

§ One	question	is	how	much	better	are	they	getting	for	our	applications	in	
several	metrics
§ Time
§ Vectorization
§ Optimization	for	memory	transfers
§ Use	of	newer	hardware	functionality



Generations	of	Compilers
§ For	Knights	Landing	these	questions	come	up	a	lot	(especially	vectorization)

§ Analysis:
§ Study	the	IC/NALU-CFD	Application	which	is	representative	of	SIERRA	STK	Mesh	use
§ Solves	fairly	simple	“rotor	blade”	problem	using	optimized	KNL	builds

§ Limited	OpenMP due	to	continuing	work	with	Trilinos

§ Used	Intel	16.2,	17.4	and	18.0	(Beta)	compilers
§ “Compilers	are	getting	better	at	producing	higher	levels	of	vectorization and	code	

optimization	over	time	– true	or	false?”



Execution	Time
§ Intel	18.0	compiler	is	the	fastest	(in	

DDR	the	results	are	virtually	identical)

§ Still	see	huge	differences	in	threaded	
versus	MPI-only	performance	because	
significant	number	of	kernels	are	not	
threaded	(development	on-going)

§ Only	marginal	improvement	from	
HBM/Cache	over	DDR
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Memory	Bandwidth	Analysis	(KNL)
DDR-Only HBM-Cache 

DDR

HBM

Cache

HBM Bursts are 
shorter duration

See some improvements in the use of the memory systems but difference is only 
2X despite ~5X hardware difference increasing dictated by core performance



Vectorization (Per	Rank)	(APEX/Tesserae)
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Approx 20% of FP is vectorized Approx 35% is “wide” vectorizedApprox 15% is FP Instruction



Metrics	of	Interest	(Vendors	Ask	For)
§ Memory	Transferred/Memory	Ref

§ Intel	16.2	– 9.24	Bytes/Ref
§ Intel	17.4	– 9.55	Bytes/Ref
§ Intel	18.0	– 9.72	Bytes/Ref
§ Higher	means	more	efficient	transfers

§ Bytes	to	Floating	Point	Ratio
§ Intel	16.2	– 12.86
§ Intel	17.4	– 11.97
§ Intel	18.0	– 11.72
§ Lower	means	less	data	movement 0
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Discussion
§ Seeing	improvements	in	time	with	successive	compiler	generations	over	the	same	code	

base
§ Shows	there	is	value	in	pursuing	updating	compiler	versions	(even	though	revalidation	is	time	consuming)
§ Allows	us	to	more	efficiently	use	hardware	resources	which	we	have	paid	for

§ Vectorization levels	are	still	lower	than	we	would	like	even	on	a	system	like	Knights	
Landing	where	the	VPUs	are	very	efficient
§ C++	continues	to	be	our	nemesis	with	vectorization
§ Kokkos adding	to	the	complexity	with	inlining and	use	of	views	that	cannot	pass	alias-analysis	when	used	in	

lambda	functions

§ Future	hardware	systems	with	greater	memory	bandwidth	are	likely	to	place	much	
greater	emphasis	on	instruction	efficiency/optimization	of	computation



FY17	CODESIGN UPDATE FROM SANDIA



Codesign Highlights	for	FY17
§ Continue	to	bring	up	of	ATDM	codes	on	Haswell,	

Knights,	POWER8	and	GPUs
§ Seeing	significant	efforts	with	underpinning	of	Trilinos and	

some	really	big	improvements	now	underway

§ Exceptionally	broad	testing	of	compilers	including	
LLVM,	GCC,	IBM-XL,	NVCC,	Intel,	PGI	and	in	some	
limited	cases	Cray
§ Early	Intel	18.0	working	very	well	for	code	portfolio
§ 30%	reduction	in	compile	times	with	IBM	XL	(still	takes	a	

long	time)
§ Submitted	big	pile	of	bugs	this	year	on	early	releases

§ AMD	has	supplied	a	ROCm back-end	developed	for	
Kokkos (and	lots	of	fixes)
§ Benchmarking	on	Fiji	GPUs	underway https://github.com/kokkos/kokkos



Codesign Highlights	for	FY17
§ Local	team	performed	early	runs	on	Sky	Lake	

Platinum	Xeon
§ Results	are	looking	very	strong	for	many	benchmark	areas

§ Wave-1	shake-down	of	Cavium ARM	processors	
completed
§ Have	NALU-CFD	and	large	suite	of	packages	running	(even	

with	the	correct	answer!),	results	provided	back	to	HPE

§ Continuous	Performance	Monitoring	LDMS	System	
(Jim	Brandt,	Jeanine	Cook	and	Tom	Tucker)
§ Slowly	taking	shape,	prototypes	on	Mutrino HSW/KNL	now	

underway	and	data	gathering	shown	when	used	in	DAT	
modes

§ Hoping	for	some	of	this	to	come	online	in	FY18 0
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Thank	You!
§ Sandia	Application	Performance	Team	(“APT”)
§ ASC	Advanced	Test	Bed	Admin/Support	Team
§ SIERRA,	RAMSES	and	CTH	Code	Groups
§ Trilinos Developers
§ ATDM	Code	Groups
§ ATDM	Software	Environment	Team

§ L2	Milestone	Review	Team!



The	FY17	Award	for	Patience	Goes	To..
§ Clay	Hughes

§ For	services	to	getting	the	IBM	XL	
compiler	to	compile	Trilinos and	
working	with	the	NVIDIA	Profiler	despite	
it	taking	a	significant	amount	of	time





APPLICATION METRIC GATHERING



Application	Metric	Gathering
§ ATDM/SPARC

§ MPI	Operation	Breakdown
§ MPI	Function	Times
§ Thread/Rank	Scaling
§ Native	counter	timing	

comparison	(Haswell vs.	Knights	
Landing)

§ Comparison	of	native	solvers	vs.	
Trilinos

§ ATDM/EMPIRE/Drekar
§ Native	counter	timing	

comparison	of	Haswell,	Knights	
Landing	and	POWER	w/	P100	
GPUs

§ GPU/CPU	kernel	profiling

§ IC/NALU
§ Native	counter
§ MPI	Match	Lists	(early	in	

presentation)



PERFORMANCE ANALYSIS OF
ATDM/EMPIRE/DREKAR
Work	by	Paul	Lin



EMPIRE/Drekar Solver	Performance
§ Focus	was	on	trying	to	improve	performance	of	ATDM/EMPIRE/Drekar/fluids	solve	

(Trilinos solvers)
§ What	application	developers	(e.g.	Drekar dev)	really	want

§ profile	code	performance,	e.g.	provide	breakdown	where	time	is	being	spent	with	the	goal	of	identifying	performance	
bottlenecks

§ even	better:	help/work	with	them	or	TPL	developers	to	improve	performance

§ Performance	profiling	and	improving	thread	scaling	on	KNL
§ mainly	focused	on	single	KNL	(mutrino/tr2,	ellis/bowman)	because	if	doesn't	thread	scale	on	single	KNL,	

will	not	on	multiple	KNLs
§ after	get	good	single	KNL	performance,	then	will	focus	on	multiple	KNLs
§ But	did	look	at	performance	of	multiple	KNLs	(up	to	512)
§ EMPIRE	lead	provided	representative	plasma	test	case

§ Performance	profiling	for	large-scale	simulations
§ Focus	on	MPI	performance
§ Most	of	this	work	was	for	CPUs	rather	than	KNL
§ Employed	a	different	test	case	(MHD)



EMPIRE/Drekar Thread	Scaling	on	KNL
§ Accomplishments

§ Tpetra matrix-matrix	addition	(worst	thread	scaling	kernel)
§ Significant	reduction	in	time	and	significant	improvement	in	thread	scaling	for	
for	single	KNL	with	one	MPI	process

§ Still	in	progress:	multiple	MPI	processes	and	multiple	KNLs
§ Gauss-Seidel	(second	worst	thread	scaling	kernel)

§ Significant	improvement	in	thread	scaling	for	solve	(apply	GS)
§ KokkosKernels team	working	to	improve	setup	time	for	GS

§ Had	identified	additional	major	kernels	that	did	not	thread	scale	(work	
still	in	progress)
§ few	items	in	MueLu setup
§ Tracking	all	above	issues	with	github issue



EMPIRE/Drekar Solvers	on	KNL
§ Single	mutrino KNL,	1	MPI,	increase	OMP	

threads	from	1	to	64
§ Setup:	most	expensive	kernel	for	1	OMP	is	

mat-mat	multiply,	but	KKMEM	thread	scales	
well	(1	OMP	~47%	of	setup,	64	OMP	~4%	of	
setup)

§ Worst	thread	scaling	kernels:
1. Tpetra matrix-matrix	addition	during	setup	

(separate	from	multigrid)
2. Application	of	Gauss-Seidel	smoother	during	

solve
3. A	few	kernels	in	MueLu multigrid setup

• For	1	and	64	OMP,	multigrid setup	~9%	
and	~13%	of	total	setup,	respectively



On-Node	Improvement	(EMPIRE/Drekar)
§ Single	mutrino KNL,	1	MPI,	increase	

OMP	threads	from	1	to	64
§ Significant	reduction	in	time	and	

significant	improvement	in	thread	
scaling	for	for	single	KNL	with	one	
MPI	process

§ Still	in	progress:	multiple	MPI	
processes	and	multiple	KNLs



Improv.	to	Gauss	Seidel	Setup/Apply
§ Single	mutrino KNL,	1	MPI,	increase	OMP	

threads	from	1	to	64
§ previously	used	non-threaded	Gauss-Seidel	

(“old	GS”)
§ switched	to	KokkosKernels threaded	

Gauss-Seidel	(“orig MT-GS”)
§ initially,	threaded	Gauss-Seidel	setup	

time	was	very	high,	worked	with	
KokkosKernels team	(Deveci)	to	
significantly	reduce

§ Improved	MT	Gauss-Seidel	(“new	MT-GS”):	
good	threaded	performance	for	setup	to	8	
OMP,	reasonable	threaded	solve
§ KokkosKernels team	currently	working	

on	more	improvements



EMPIRE/Drekar Large	Scale	Runs
§ Focused	on	MPI	performance	and	scaling	rather	than	threaded
§ Accomplishments:

§ panzer	scaling	bug	after	change	from	stk_classic to	stk (identified	and	now	fixed)
§ Caused	a	major	memory	explosion,	Drekar was	failing	with	32k	MPI	processes	when	it	had	previously	been	run	with	

1.6M	MPI
§ STK	CommSparse scaling	bug	(identified	and	fixed)

§ Big	performance	issue	at	scale;	both	memory	and	time	explosion
– same	STK	bug	and	Cray	MPI	bug	that	caused	Nalu to	fail	the	Trinity	Phase	2	acceptance	test;	I	was	actually	

simultaneously	chasing	down	this	issue	with	both	Drekar and	Nalu,	not	realizing	at	that	time	it	was	the	same	
bugs

§ MueLu setup
§ identified	and	work	with	MueLu team	to	fix	a	modest	scaling	issue,	for	524,288	MPI	reduced	setup	by	~10%
§ we	worked	with	Zoltan2	team	(M.	Deveci)	on	a	scaling	issue---preliminary	results	on	131,072	MPI	on	BG/Q	showed	a	

reduction	in	setup	of	~30%

§ Identified	other	issues	(work	still	in	progress)
§ MueLu setup

§ Few	other	MueLu setup	scaling	issues	(working	with	MueLu team	to	resolve)
§ Tpetra matrix-matrix	multiplication

§ Scaling	issues	with	periodic	BCs	(panzer	scaling	issue;	pushed	back	to	FY18)



EMPIRE/DREKAR ANALYSIS ON
POWER-EA
Work	by	Clay	Hughes



EMPIRE/Drekar on	POWER-EA
§ GCC	+	CUDA	Builds	working	successfully	although	problem	sizes	often	need	to	

be	reduced	to	fit	into	GPU	memory
§ Finding	that	scratch	arrays	used	in	inner	kernels	are	growing	as	kernel	complexity	increases

§ Significant	amount	of	work	trying	to	get	IBM	XL	to	compile	code so	we	can	
perform	a	cross-comparison	(performance	and	functionality)
§ Latest	IBM	XL	14.1.0	does	not	work	correctly
§ Either	does	not	compile	the	code	(errors	in	particular	with	OpenBLAS inline	assembly	for	VSX)
§ Or	compiles	and	has	a	segmentation	fault	in	BLAS	routines	(not	present	in	GCC	version	of	the	

code)

§ Metric	analysis	of	EMPIRE/Drekar on	Pascal	GPUs	an	issue



Performing	Metric	Gathering	on	P8-EA
§ Gathering	metrics	using	NVIDIA	

profiler	in	POWER-EA	systems	is	
causing	significant	increases	in	
runtime

§ Specific	metrics	causing	problems:
§ DRAM	Read/Write	Throughput
§ L2	Read/Write	Throughout
§ GLD

§ In	some	cases	the	runtimes	exceed	48	
hours	which	are	our	job	queue	limits
§ The	worst	profiling	overhead	we	have	seen	

in	tools

Metric

Runtime Overhead of Profile Metric



Outcomes
§ Profiling	overhead	bug	is	reported	to	NVIDIA

§ Bug:	#1977033,	current	status	is	open,	NVIDIA	need	small	reproducer
§ Not	sure	that	small	reproducer	will	show	the	outcome	so	we	are	looking	at	whether	SDK	

samples	will	induce	the	behavior

§ Potential	IBM	XL	Inline	Assembly	Bug	in	XL	14.1.0	Beta
§ Reported	to	IBM	Toronto	compiler	team
§ Investigation	underway

§ Feedback	to	EMPIRE/Drekar development	on	the	use	of	large	“work	sets”	
which	can	significantly	bloat	memory	consumption	on	GPU



ANALYSIS OF ATDM/SPARC
Work	by	Courtenay	Vaughan



SPARC	Analysis
§ Performed	for	the	Trinity	Phase-II	open-campaign	to	assess	scaling

§ SPARC	is	written	to	utilize	two	approaches:
§ Native	Solver	written	in	OpenMP as	prototype	(considered	to	be	very	fast)
§ Full	Trilinos solvers	being	slowly	ported	to	Kokkos (many	packages,	slower	but	being	optim’d)

§ Questions:
§ What	needs	most	improvement?
§ What	packages?
§ How	is	scaling	on	and	between	nodes	performing	today?



SPARC	Runtime	with	Solver	Variants

Up to 2X performance difference (native faster) but .. MPI times are slightly faster in Trilinos (shows history as MPI-only 
code, SPARC shows what a newly threaded, from group up code can do.



Thread	Scaling	of	SPARC	on	KNL
§ Captured	with	in-code	timings	but	

also	checked	against	CrayPAT
outputs	(for	small	nodes)

§ Trilinos Line	Solver	is	approx.	50%	
slower

§ Trilinos Point	Solver	is	competitive	
but	does	not	scale	as	well	with	
large	thread	counts



Observations	from	MPI	Analysis
§ Number	of	messages	exchanged	decreases	from	130000	to	103000	per	MPI	

rank	when	going	from	MPI	only	to	64	threads
§ So	the	total	number	of	messages	decreases	substantially

§ The	bytes	exchanged	grows	from	1.2	E10	to	1.46	E11	bytes	per	MPI	rank	when	
going	from	MPI	only	to	64	threads
§ The	total	message	traffic	drops	from	4.5	E13	to	9.33	E12	bytes
§ The	average	message	size	goes	from	82	KB	to	1.3	MB

§ For	the	native	solver,	the	number	of	reduces	stays	constant	at	47500	calls	and	
3.6	MB

§ For	the	Trilinos solver,	the	number	of	reduces	stays	constant	at	30000	calls	
and	2.4	MB



Update	from	SPARC	Team
§ Andrew	Bradley	has	been	developing	a	faster	solver	for	Trilinos (using	

experiments	from	native	solver)
§ Early	results	which	were	used	for	the	Power	API	L2	show	significant	improvement
§ Now	as	fast/faster	than	the	native	solver
§ Builds	on	experiences	from	native	development	but	with	additional	optimizations

§ Will	be	pushed	into	Trilinos before	the	end	of	the	FY



LMDS KERNEL AND CONTINUOUS
PERFORMANCE TRACING
Kernel	Monitoring	Work	by	Si	Hammond,	Christian	Trott,	Tom	Tucker,	Jim	Brandt	and	Ann	
Gentile
Continuous	Monitoring	Work	by	Jeanine	Cook,	Jim	Brandt,	Ann	Gentile	and	Tom	Tucker



Application	Kernel	Monitoring

Performance 
Database (LDMS)

Alerts Performance Trends

Kokkos
Parallel
Section

Capture start and stop events with 
timers, performance counters, 
system counters etc

Application

KokkosP-Enabled Monitoring

Work by Si Hammond, Christian Trott, Tom Tucker, Jim Brandt 
and Ann Gentile

§ KokkosP-based	kernel	profiling	direct	into	LDMS	
metrics	database
§ Demonstrated	on	KNL,	Haswell and	POWER8
§ Ability	to	hook	into	Kokkos kernels	and	regions	without	

requiring	changes	to	compiler,	linking	etc

§ Provides	detailed	drill	down	for	Kokkos-enabled	
applications
§ Can	connect	with	vendor	tools,	PAPI,	perf,	etc
§ Data	movement	(e.g.	NVLINK,	MC-DRAM	etc)
§ Provides	Kokkos context	(e.g.	“parallel-for”)



LDMS	Continuous	Monitoring
§ Continuous	HPC	system	monitoring	framework	that:

§ Collects	numeric	data
§ Moves	and	aggregates	data
§ Stores	data
§ Analyze	data

§ Troubleshooting	
§ Optimization
§ Inform	future	systems

§ Plug-in	architecture
§ Customized	samplers	for	data	collection

§ Backend
§ Storage	(SOS	DB)
§ Analysis	(Python)
§ Visualization	(Grafana)

§ Application-based	samplers
§ PAPI,	Perf,	MPI,	DLoad

Lightweight	Distributed	Metric	Service	
(LDMS)	High	Level	Overview

*	Only	the	current	data	is	
retained	on-node

Work by Jeanine Cook, Tom Tucker, Jim Brandt and Ann 
Gentile



Application	LDMS	“Samplers”
§ PAPI

§ Menu-driven
§ Instruction	mix	(vectorization,	cycles	per	instruction	(CPI))
§ Branch	mispredict rates
§ Cache/memory	statistics	(miss/hit	rates)
§ Average	(estimated)	memory	bandwidth	
§ Stall	cycle	profiles	(which	components	incur	stalls)
§ Other	events	for	performance	characterization	work

§ Cross-platform
§ Haswell/Broadwell,	Ivybridge
§ Very	near	future:	Power8,	KNL

§ Opt-in	and	configure	through	runscript variables
§ DLoad

§ Enables	dynamic	loading	and	reconfiguring	(e.g.,	application/PAPI	events)	of	
application	samplers

§ MPI
§ Developed	by	UCF
§ Working	on	usability	issues

§ Perf
§ Complete	after	PAPI	development	is	complete	and	tested
§ Currently	low	priority

(LDMSd/
PAPI/DLoad)

nid0001 nid0002 nidXXXX. . .
(LDMSd/

PAPI/DLoad)
(LDMSd/

PAPI/DLoad)

LDMS Sampler Plug-In Interface 

LDMS API

Application Samplers

PAPI DLoad MPI

LDMS Aggregators

LDMS Stores

Runscript
.
.
.
# Application name
APP_NAME="lulesh"
# Maximum PIDS
MAXPIDS=16
# Multiplex (1-yes 0-no)
MULTIPLX=1 
# Events menu
EVENTS_MENU="APT"
# Username
USERNAME=“jdoe”
# collection interval (1000000 is a second)
INTERVAL=1000000
.
.
# “none” = nodelist; not required by srun
srun --ntasks-per-node=1 load_papi_sampler.sh 
$MAXPIDS $MULTIPLX $EVENTS_MENU $USERNAME 
$APP_NAME ${SLURM_JOBID} $INTERVAL "none"

LDMS Analysis & Viz



LDMS	Status
§ PAPI	&	DLoad samplers

§ Small-scale	testing	complete	on	several	testbeds
§ Large-scale	testing	on	Mutrino/Haswell scheduled	08/31
§ All	KNL	testing	by	11/01

§ MPI	sampler
§ Targeting	testing	completion	by	Sept	15	

§ LDMS	w/Application	Samplers,	and	Backend,	Analysis,	basic	Viz
§ Plan	to	launch	on	Mutrino/Haswell by	Sept.	15

§ Working	with	Sierra	team	to	integrate	LDMS	application	monitoring	into	
nightly	testing
§ Hope	to	complete	integration	and	testing	by	12/01
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